Τρία είδη μυϊκών ιστών





Πως θα σας φαινόταν αν οδηγούσατε μία φόρμουλα για περισσότερο από μία ώρα σε αγώνα, να είχατεεξασκηθεί απόλυτα στην πίστα, αλλά να μην γνωρίζατε τίποτα για τον κινητήρα σας, τα περιφερειακάεξαρτήματα, καθώς και για το τι καύσιμα καίτε την ώρα του αγώνα;Ο ανθρώπινος κινητήρας έχει μία ιδιομορφία:
προσαρμόζεται
! Είτε αρνητικά, είτε θετικά. Ο ανθρώπινοςοργανισμός είναι ένα σύνολο σύνθετων μηχανισμών, που λειτουργούν τόσο αυτόνομα, όσο καισυνεργατικά. Το θεάρεστο χαρακτηριστικό του ανθρώπου, και το οποίο του έχει επιτρέψει να επιβιώσειμέχρι σήμερα, είναι η ικανότητά του να προσαρμόζεται στις αλλαγές που γίνονται στο περιβάλλον του. Στηνπραγματικότητα, σε κάθε αλλαγή του περιβάλλοντος, κάθε μέρα, προσαρμόζονται όλοι οι επι μέρουςμηχανισμοί του σώματός του.Αυτή την ικανότητα προσαρμογής εκμεταλλεύονται και οι αθλητές, προκειμένου να βελτιώσουν τηνικανότητα λειτουργίας του οργανισμού τους κάτω από εξειδικευμένες, και συνήθως ακραίες συνθήκες.Δίνοντας
καθημερινά ερεθίσματα
, μέσω της προπόνησης, "ξεγελάνε" τον οργανισμό, παρουσιάζοντάςτου ένα περιβάλλον καινούριο, όπου απαιτείται ολοένα και καλύτερη φυσική κατάσταση για να επιβιώσει. Οοργανισμός, θα προσπαθήσει να προσαρμοστεί σε αυτό το περιβάλλον, μόνο εφόσον του δοθεί τοπεριθώριο της προσαρμογής (
αποκατάσταση
). Εάν όχι, τότε δεν μπορεί να ανταποκριθεί στο "εικονικό"αυτό περιβάλλον, και πεθαίνει εικονικά, παρουσιάζοντας συμπτώματα κόπωσης, χειροτέρευσης επιδόσεων,πτώσης του ανοσοποιητικού συστήματος κ.α.Στην σειρά κειμένων «Όλα για την αντοχή», θα επιχειρήσουμε να μελετήσουμε την λειτουργία τουοργανισμού μας όσον αφορά την πλευρά των αθλημάτων αντοχής, με κύριο στόχο να αποκαλύψουμε
τιείναι αυτό που περιορίζει την απόδοση του αθλητή
, και
με ποιό τρόπο μπορεί να προκληθεί μίαπροσαρμογή προς το καλύτερο
, ή απλά... μία σωστή προπόνηση.Δυστυχώς, θα λέγαμε ψέματα εάν υποστηρίζαμε ότι κάποιος μπορεί να σχεδιάσει μια σωστή προπόνηση,χωρίς να γνωρίζει σε βάθος της φυσιολογικές λειτουργίες του οργανισμού κατά την άθληση. Προσπάθειεςαντιγραφής τυποποιημένων προγραμμάτων προπόνησης, χωρίς γνώση του επιστημονικού υπόβαθρου πουκρύβεται από πίσω, οδηγούν με μαθηματική ακρίβεια σε
υπερκόπωση
,
στασιμότητα
, ή
αστάθεια
.Όποιος έχει την όρεξη - ή είναι ανάγκη - να μάθει για την μηχανή που κρύβει μέσα του, καλό είναι ναδιαβάσει τα παρακάτω. Μετά από την θεωρητική ανάλυση κάθε ενότητας, θα αναλύουμε τον ρόλοδιάφορων προπονητικών μεθόδων που εφαρμόζονται από τον καθένα μας, σύμφωνα με ό,τι ειπώθηκε, π.χ.τον ρόλο του ζεστάματος, των διατάσεων, των διαλειμματικών προπονήσεων κλπ.Πριν μελετήσουμε την συνεργασία των μηχανισμών του σώματος για την επίτευξη του αθλητικού έργου,θα αναλύσουμε την λειτουργία των επι μέρους μηχανισμών του ανθρώπινου σώματος, ξεκινώντας από τοπιο σημαντικό - κατά τα φαινόμενα - σύστημα: το μυϊκό.
Εισαγωγή
Η συστολή των μυών είναι αυτή που μας επιτρέπει να παράγουμε οποιαδήποτε μορφή έργου. Έτσι, σανσημείο αφετηρίας της μελέτης μας θα αποτελέσει η περιγραφή της σχεδίασης και της διαδικασίας συστολήςτων μυών, σε ένα επίπεδο που κρίνεται απαραίτητο για την κατανόηση των επόμενων κεφαλαίων.Ο μυϊκός ιστός αποτελεί έναν ιδιοφυή μηχανισμό, ο οποίος μπορεί να προσαρμόζεται σε πληθώρακαταστάσεων, και να αντεπεξέρχεται σε κάθε είδους απαίτηση που προκύπτει από τις ανθρώπινεςδραστηριότητες. Η λειτουργία του γίνεται ακόμη πιο σύνθετη και ενδιαφέρουσα όταν απαιτείται από αυτόννα λειτουργήσει σε καταστάσεις έντονης επιβάρυνσης, που συμβαίνουν κατά την αθλητική δραστηριότητα,και η οποία είναι αυτή που μας ενδιαφέρει.
1.2 Τα είδη των μυών

Τρία είδη μυϊκών ιστών μπορούμε να βρούμε στον άνθρωπο με βάση τα μορφολογικά και λειτουργικάχαρακτηριστικά τους.

Λείους μυς βρίσκουμε στα εσωτερικά όργανα, όπου λαμβάνουν χώρα σχετικά αργές καιομοιόμορφες κινήσεις, όπως στον γαστρεντερικό σωλήνα, και η κίνησή τους δεν κατευθύνεται απότην βούληση του ανθρώπου.

Οι γραμμωτοί μυς (σκελετικοί μυς) κρατούν το σώμα σε ισορροπία και το κινούν, συνδεόμενοιμέσω των τενόντων με τα οστά. Όταν συσπώνται οι μυς, δηλαδή όταν μαζεύονται, τότε μέλη τουσκελετού που συνδέονται με τις αρθρώσεις πλησιάζουν ή απομακρύνονται το ένα από το άλλο, καιδημιουργείται η κινητικότητα του ανθρώπινου σώματος.

Οι μυς της καρδιάς καταλαμβάνουν μια ενδιάμεση θέση ανάμεσα στους λείους και τουςσκελετικούς μυς. Όπως οι λείοι μυς, δεν υπακούν άμεσα στην θέληση και διακρίνονται για τηνικανότητα να αντιστέκονται στην κόπωση. Επίσης, μοιάζουν στους σκελετικούς, επειδή μπορούν νασυσπώνται γρήγορα και να δουλεύουν εντατικά.Με την προπόνηση όχι μόνο επηρεάζεται η ικανότητα απόδοσης των σκελετικών μυών, αλλά επιπλέοναλλάζει η δομή και η λειτουργική ικανότητα των καρδιακών και λείων μυών. Σε αυτό το κείμενο θαμελετήσουμε τους γραμμωτούς, ή πιο απλά, σκελετικούς μυς.

1.3 Διάρθρωση τουσκελετικού μυ - Διαδικασία συστολής
Ο σκελετικός μυς αποτελείται από
δεμάτια
μυϊκών κυττάρων. Επειδή το μυϊκό κύτταρο έχει μικρήδιάμετρο και μεγάλο μήκος, χαρακτηρίζεται και ως
μυϊκή ίνα
. Τα δεμάτια των μυϊκών ινών σχηματίζουνστις άκρες τους
τένοντες
, μέσω των οποίων μεταφέρεται η μυϊκή δύναμη στο σκελετικό σύστημα. Ανάμεσαστις μυϊκές ίνες υπάρχει ένα λεπτό δίκτυο μικρών αιμοφόρων αγγείων (
τριχοειδή
) μέσω των οποίων τοαίμα φτάνει σε αυτές. Επίσης, στις μυϊκές ίνες φτάνουν και ακουμπάνε
νευρικές απολήξεις
, μέσω τωνοποίων ο εγκέφαλος δίνει σήμα για να κινητοποιηθούν, αλλά λαμβάνει και σήματα για την εξέλιξη τηςμυϊκής λειτουργίας.Οι μυϊκές ίνες με τη σειρά τους αποτελούνται από τα
μυοινίδια
. Τα μυοινίδια είναι αυτά που αποτελούντα πραγματικά συσταλτά στοιχεία του μυ. Αποτελούνται από πολύ μικρές, διαδοχικά συνδεδεμένεςσυσταλτές στοιχειώδεις μονάδες, τα σαρκομέρια, τα οποία τέλος με τη σειρά τους αποτελούνται από ταμυονημάτια.Λόγω της δομής των σαρκομερίων, σε καταστάσεις έντονης διάτασης ή συστολής, δεν μπορεί νααναπτυχθεί μεγάλη δύναμη από τον μυ. Έτσι,
οι αθλητικές κινήσεις, θεωρούνται πιο αποδοτικές ότανο μυς δεν έχει υπερεκταθεί ή μαζευτεί
. Για παράδειγμα, ο ποδηλάτης δεν μπορεί να ασκήσει δύναμηστο πετάλι όταν το πόδι του τείνει να τεντώσει ή όταν είναι αρκετά λυγισμένο. Ομοίως, ο δρομέας δενμπορεί να δώσει ισχυρή ώθηση όταν το πόδι του κοντεύει να τεντώσει προς τα πίσω. Το χαρακτηριστικό

αυτό αλλάζει μέσω της προπόνησης, με τρανταχτό παράδειγμα τους αρσιβαρίστες, οι οποίοι μπορούν ναασκήσουν τρομερές δυνάμεις στον τετρακέφαλο, ακόμα και όταν αυτός βρίσκεται σε πλήρη διάταση.Για να μπορέσει ο μυς να συσταλλεί, πρέπει πρώτα να υπάρχει διαθεσιμότητα σε
ιόντα Ασβεστίου(Ca+)
. Χρησιμοποιόντας αυτά, ο εγκέφαλος δίνει σήμα στον μυ για συστολή. Στη συνέχεια, απαιτείται ηύπαρξη ποσότητας
τριφοσφωρικής αδενοσίνης
(
ATP
). Η ATP αποτελεί το "ενεργειακό νόμισμα" τουοργανισμού, και μόνο με αυτό μπορούν να γίνουν οι λειτουργίες του. Εφόσον υπάρχει αυτή, τότε ο μυς τηνχρησιμοποιεί για να πάρει την ενέργεια που χρειάζεται, και να κάνει την συστολή του.
Ενέργεια όμως απόATP χρειάζεται και για την χαλάρωση του μυ
, προκειμένου να γίνει η επόμενη συστολή. Εάν δενυπάρχει διαθέσιμο ATP, τότε παρατηρείται
μυϊκή ακαμψία
, δηλαδή ο μυς δεν χαλαρώνει. Για αυτό, σεσυνθήκες εξάντλησης, όπου ο οργανισμός δεν μπορεί να παράγει την απαιτούμενη ATP, παρουσιάζει
κράμπες
, δηλαδή ο μυς βρίσκει ενέργεια για να συσταλλεί, αλλά δεν βρίσκει ενέργεια για να χαλαρώσει.Η ATP που χρειάζεται ο μυς για να λειτουργήσει, μπορεί να παραχθεί:

Από την
φωσφοκρεατίνη
που βρίσκεται αποθηκευμένη στους μυς, και η οποία εξαντλείται μετάτα 7 δευτερόλεπτα

Από το
γλυκογόνο
που βρίσκεται στους μυς καθώς και στο ήπαρ, και το οποίο μπορεί ναδιαρκέσει μέχρι και 90 λεπτά

Από το
λίπος
που βρίσκεται σε όλο το σώμα, και μπορεί να διαρκέσει για ώρεςΟι διαδικασίες με τις οποίες ο οργανισμός επιλέγει τήν πηγή από την οποία θα παράγει το ATP, θααναλυθούν σε βάθος αργότερα.Μέσω των νευρικών απολήξεων, ο εγκέφαλος λαμβάνει μηνύματα για την διαδικασία συστολής καιχαλάρωσης των μυών. Σε καταστάσης έντονης εξάντλησης, και κυρίως με την απουσία
ηλεκτρολυτών
, οιοποίοι απαιτούνται για τα νευρικά σήματα, πέρα από το ότι ο αθλητής αδυνατεί να δώσει ισχυρό σήμασυστολής στους μύες (εξάντληση), επίσης διαταράσσεται η ενημέρωση του εγκεφάλου για την μυϊκήδραστηριότητα, και πολλές φορές αποτυγχάνει να δώσει σήμα χαλάρωσης στους μύες όταν αυτοί τοχρειάζονται (
κράμπες
). Οι ηλεκτρολύτες λοιπόν, κρίνονται απαραίτητοι για την ομαλή συνεργασίανευρικού και μυϊκού συστήματος.
Το καλοκαίρι
, κατά το οποίο με την εφίδρωση ο αθλητής χάνειχρήσιμους ηλεκτρολύτες, κρίνεται απαραίτητη η αναπλήρωσή τους μέσω της τροφής, ή μέσω σκευάσματος(ισοτονικά ποτά) κατά την προπόνηση διαρκείας, ώστε να αποφευχθούν φαινόμενα αδυναμίας ή κράμπες.

1.4 Μιτοχόνδρια: η γεννήτρια του μυ
Το πιο σημαντικό χαρακτηριστικό των μυϊκών κυττάρων, από πλευράς αντοχής, είναι η παρουσία κάποιωνμονάδων που ονομάζονται
μιτοχόνδρια
. Η πρωταρχική λειτουργία αυτών είναι η παραγωγή της ενέργειαςπου χρειάζεται για την μυϊκή συστολή, για αυτό και τα μιτοχόνδρια ονομάζονται «γεννήτριες» των μυών.Τα μιτοχόνδρια είναι τοποθετημένα σε στρατηγικά σημεία ανάμεσα στα μυοινίδια, ώστε η ενέργεια πουπαράγεται να πηγαίνει κατευθείαν εκεί που χρειάζεται. Οι γνώσεις μας για τον ακριβή τρόπο παραγωγήςενέργειας από τα μιτοχόνδρια είναι ελλιπείς.Χονδρικά, κάθε μιτοχόνδριο αποτελείται από ένα σύνολο ενζύμων (ουσίες που βοηθούν την ευκολότερηδιεξαγωγή χημικών αντιδράσεων), τα οποία μετατρέπουν την ενέργεια που περιέχεται στην τροφή (τιςλεγόμενες θερμίδες) στο ενεργειακό «νόμισμα» του σώματος, δηλαδή ένα μόριο που ονομάζεται
τριφοσφωρική αδενοσίνη
, ή γνωστό ως
ATP
. Τα μιτοχόνδρια λειτουργούν μόνο με την παρουσίαεπαρκούς ποσότητας οξυγόνου. Οι μυς μπορούν και δεσμεύουν το οξυγόνο που κυκλοφορεί στο αίμα λόγωτης
μυοσφαιρίνης
, μίας πρωτεϊνης που βρίσκεται διάπσαρτη ανάμεσα στις μυϊκές ίνες. Χωρίς την παρουσίαοξυγόνου, τα μιτοχόνδρια δεν μπορούν να παράγουν ATP, και η λειτουργία των μυϊκών κυττάρων θασταματούσε, εάν δεν υπήρχε ένα εφεδρικό σύστημα παροχής ενέργειας. Το εφεδρικό αυτό σύστημαστηρίζεται σε ένα κοκτέιλ ενζύμων που περιτριγυρίζουν τις μυϊκές ίνες, και με τα οποία μπορεί νααξιοποιηθεί το γλυκογόνο που είναι αποθηκευμένο μέσα στους μυς, χωρίς την παρουσία οξυγόνου (ηπολλές φορές ονομαζόμενη - λανθασμένα κατά κάποιους - διαδικασία της
αναερόβιας γλυκόλυσης
). Οιαερόβιες και αναερόβιες διαδικασίες θα αναλυθούν αργότερα σε βάθος.
1.5 Οι κατηγορίες των μυϊκών ινών

Οι μυϊκές ίνες κατηγοριοποιήθηκαν όσον αφοράτρία χαρακτηριστικά τους: το χρώμα, την περιεκτικότητά τους σε μιτοχόνδρια, και την ταχύτητα συστολήςτους. Το αποτέλεσμα αυτής της κατηγοριοποίησης, διαχώρισε τις μυϊκές ίνες σε:
Μυϊκές ίνες αργής συστολής (ST),
οι οποίες έχουν ερυθρό (κόκκινο) χρώμα λόγω υψηλήςπεριεκτικότητας στην πρωτεΐνη μυογλοβίνη (myoglobin), η οποία είναι κόκκινη, και η οποία χρησιμεύειτόσο για την μεταφορά του οξυγόνου στα μιτοχόνδρια, όσο και για την αποθήκευση οξυγόνου στους μύες.Η συγκέντρωση σε μιτοχόνδρια σε αυτές της ίνες είναι πολύ υψηλή. Τέλος, η ταχύτητα συστολής κρίνεταισχετικά αργή.
Μυϊκές ίνες ταχείας συστολής (FT),
οι οποίες όμως χωρίζονται σε επί μέρους κατηγορίες FTa, η οποίαμοιάζει με τις ST αφού περιέχει και αυτή αρκετά μιτοχόνδρια, και εμφανίζεται σε αθλητές αντοχής. Επίσης οιFTb οι οποίες είναι οι κλασσικές ίνες ταχείας συστολής, είναι άσπρες λόγω έλλειψης μυογλοβίνης, έχουνχαμηλή περιεκτικότητα σε μιτοχόνδρια, και έχουν υψηλή ταχύτητα συστολής. Τέλος, οι FTc, οι οποίεςφαίνεται να μπορούν να προσαρμοστούν ανάλογα με τα ερεθίσματα που δέχεται ο οργανισμός.Σε χαμηλές εντάσεις άσκησης, κινητοποιούνται οι αργές ίνες. Όσο αυξάνεται η ένταση της άσκησης, ήόσο εμφανίζεται κόπωση στις αργές ίνες, ξεκινάει και η κινητοποίηση των ταχέων ινών. Έτσι, έναςχομπίστας ο οποίος αθλείται σε χαμηλές εντάσεις, και δεν τον ενδιαφέρει η επίδοση σε αγώνες, δενχρειάζεται να ανησυχεί για την εκγύμναση των ταχέων ινών.
Ένας αθλητής επιδόσεων όμως είναιαπαραίτητο να ασκείται σε όλες τις εντάσεις
(χαμηλές και υψηλές), ώστε να υπάρχει εκγύμναση καιτων δύο κατηγοριών ινών.
1.6 Οι αθλητές αντοχής γεννιούνται ή γίνονται;
Το ποσοστό μυϊκών ινών αργής και ταχείας συστολής σε κάθε άνθρωπο είναι προκαθορισμένο από τηστιγμή που γεννιέται, και δεν μπορεί να αλλάξει. Μετά την ανακάλυψη αυτού του γεγονότος, οιεπιστήμονες του αθλητισμού έσπευσαν να συμπεράνουν πως ανάλογα με το ποσοστό αυτό - με το οποίο οάνθρωπος γεννιέται - μπορούμε να πούμε εάν ένας αθλητής θα διακριθεί στα σπριντ ή στην αντοχή.

Μετέπειτα μελέτες όμως, έθεσαν υπό αμφισβήτηση αυτό το συμπέρασμα, κυρίως για τα αγωνίσματααντοχής, για τους εξής λόγους:

Οι παράμετροι που επηρρεάζουν την απόδοση, ιδίως στα αθλήματα αντοχής, δεν είναι μόνομυϊκοί. Έτσι, κάποιος μπορεί να υστερεί σε αναλογία ταχέων και αργών μυϊκών ινών, αλλά ναπαρουσιάζει άλλα πλεονεκτήματα που να τον θέτουν ικανό για υψηλή επίδοση.

Οι μυϊκές ίνες προσαρμόζουν την μορφολογία τους στα ερεθίσματα που δέχονται. Σε τελευταίαπειράματα που έγιναν, ομάδα γιατρών έκοψε τα νεύρα που συνέδεαν αργές και ταχείες μυϊκέςίνες, και αντήλλαξαν τις θέσεις τους. Παρατηρήθηκε ότι οι μυϊκές ίνες άλλαξαν σύντομα μορφήπρος την άλλη μεριά. Οι ίνες έχουν ικανότητα προσαρμογής, οπότε οι αργές ίνες μπορούν ναυξήσουν την ταχύτητα συστολής τους με κατάλληλη προπόνηση. Οι ταχείες ίνες τύπου FTb δενμπορούν να αυξήσουν τον αριθμό των μιτοχονδρίων τους αξιόλογα, οπότε κάποιος με πολύμεγάλο ποσοστό τέτοιων ινών (πάνω από 60%), πράγματι δεν έχει πολλές δυνατότητες γιαάθλημα αντοχής. Έτσι, παρατηρούνται σήμερα αρσιβαρίστες με μεγάλα ποσοστά αργών ινών, καιδρομείς με σημαντικές επιδόσεις σε μεσαίες αποστάσεις, οι οποίοι έχουν μεγάλο ποσοστό ταχέωνινών.

Οι επιδόσεις πλέον γίνονται ταχύτερες, και η ύπαρξη ινών ταχείας συστολής μπορεί να ευνοείακόμη και έναν μαραθωνοδρόμο.Συνεπώς, μπορούν οι ίνες αργής συστολής να αποκτήσουν ικανότητα ταχείας συστολής. Ιδανικήκατάσταση θεωρείται όταν υπάρχει μίγμα ινών αργής και ταχείας συστολής, αφού οι απαιτήσεις στουςαγώνες αντοχής απαιτούν πλέον υψηλές εντάσεις για μεγάλο χρονικό διάστημα. Όπως έχει βρεθεί σεδιακεκριμένους αθλητές αντοχής, η αναλογία σε FT και ST είναι περίπου 40%-60%.
1.7 Στατικές και δυναμικές συστολές: Όλα για την αιμάτωση
Σε μερικές περιπτώσεις, ο μυς συστέλλεται και παραμένει συσταλμένος για κάποιο χρονικό διάστημα,μέχρι να χαλαρώσει ξανά, όπως π.χ. στα βαθιά καθίσματα με βάρη. Αυτό το είδος συστολής ονομάζεται
ισομετρικό
, επειδή αναγκάζει τον μυ να παραμείνει στο ίδιο μήκος για κάποιο χρονικό διάστημα. Αν καιείναι λίγα τα αθλήματα όπου χρησιμοποιούνται καθαρά ισομετρικές κινήσεις, σε πολλά αθλήματα αντοχής,μπορεί η κίνηση να τείνει προς την ισομετρική, όπως π.χ. η ποδηλασία ή το τρέξιμο, ιδίως σε ανηφόρα.

Η σημαντικότερη συνέπεια κατά την ισομετρική συστολή, είναι η
αυξημένη πίεση
που αναπτύσσεταιεσωτερικά των μυών. Η πίεση αυτή μπλοκάρει τις αρτηρίες που αιματώνουν τους μύες, εμποδίζοντας τοοξυγόνο και την ενέργεια να μεταφερθεί στον μυ. Η παρεμπόδιση του αίματος προς τους μυς, εμποδίζει τηνμεταφορά του οξυγόνου, και συνεπώς εμποδίζει την παραγωγή ATP (που όπως είπαμε είναι το ενεργειακό«νόμισμα» του σώματος) στα μιτοχόνδρια. Έτσι αναγκάζουμε
τους μυς να λειτουργήσουν αναερόβια
.Βέβαια, ο μυς αποθηκεύει κάποια ποσότητα οξυγόνου στην μυοσφαιρίνη του, και την αξιοποιεί όσο μπορείσε αυτή την περίπτωση, η οποία όμως εξαντλείται μέσα σε πολύ λίγα δευτερόλεπτα. Επίσης, η χαμηλήκυκλοφορία του αίματος, παρεμποδίζει την αποβολή βλαβερών υποπροϊόντων της άσκησης, ωθώντας τουςμυς σε ανικανότητα παραγωγής έργου – αίσθημα μουδιάσματος, πόνου και παράλυσης. Τέλος, προκαλείδιαταραχές στα νευρικά ερεθίσματα των μυών, πολλές φορές προκαλώντας κράμπες.Άλλη μία σημαντική επίπτωση της ισομετρικής άσκησης, είναι η
αύξηση της καρδιακής συχνότητας
. Ηαύξηση αυτή της καρδιακής συχνότητας, π.χ. μεταξύ 160 και 190 σφυγμών ανά λεπτό, δεν σημαίνει ότι τοερέθισμα είναι προπονητικά ισάξιο με αυτό που θα δεχόταν ο αθλητής εάν δούλευε σε αυτούς τους ρυθμούςποδηλατώντας ή τρέχοντας.Από τα παραπάνω γίνεται φανερός ο λόγος που συστήνεται η
υψηλή συχνότητα
πεταλαρίσματος στηνποδηλασία. Η υψηλή συχνότητα προσφέρει καλύτερη οξυγόνωση στους μυς, αποβολή των υποπροϊόντων,και συνεπώς ικανότητα για υψηλότερη απόδοση για μεγαλύτερο χρονικό διάστημα.
1.8 Αναγέννηση του σκελετικού μυϊκού ιστού
Ο αριθμός των (γραμμωτών) μυϊκών ινών, δεν είναι δυνατόν να αυξηθεί. Παρόλα αυτά, ανάμεσα στιςίνες, υπάρχουν κάποιες "αδρανείς" ίνες, τα λεγόμενα δορυφόρα κύτταρα. Όταν συμβεί βλάβη στον μυ ήδοθεί κατάλληλο προπονητικό ερέθισμα, οι αδρανείς αυτές ίνες δραστηριοποιούνται, πολλαπλασιάζονται καισυγχωνεύονται με τις ήδη υπάρχουσες ίνες, είτε αποκαθιστώντας τον αρχικό αριθμό μυοινιδίων (μυϊκήαποκατάσταση), είτε αυξάνοντας τον αριθμό των μυοινιδίων της ίνας (μυϊκή υπερτροφία) καιπαρουσιάζοντας αύξηση της μυϊκής μάζας.
1.9 Κινητικές μονάδες
Για να κατανοήσουμε δύο βασικότατες έννοιες που εμπλέκονται σε κάθε προπόνηση, την ενδομυϊκή καιμεσομυϊκή συναρμογή, πρέπει να κατανοηθεί η έννοια της κινητικής μονάδας. Οι μυικές ίνες ενός μυ,διαιρούνται σε ομάδες, τις οποίες ονομάζουμε
κινητικές μονάδες
. Κάθε κινητική μονάδα δέχεται τηνεντολή κίνησης από τον εγκέφαλο από μία μονάδα νεύρου. Κάθε τέτοια μονάδα νεύρου είναι αφιερωμένηαποκλειστικά σε μία κινητική μονάδα. Οι κινητικές μονάδες αντιδρούν στο σήμα του νέυρου με την λογικήτου "όλα ή τίποτα". Έτσι, όταν σταλεί σήμα στο νεύρο που ανήκει σε μία κινητική μονάδα, συστέλλονταιόλες οι μυΙκές ίνες της μονάδας, ή καμία. Μυς που πρέπει να είναι σε θέση να εκτελέσουν πολύ λεπτές καιακριβείς κινήσεις, όπως του ματιού ή των δακτύλων, αποτελούνται από πολλές κινητικές μονάδες, στιςοποίες περιέχονται λίγες μυϊκές ίνες (π.χ. 3.000 κινητικές μονάδες με 8 μυϊκές ίνες η κάθε μία). Μυς πουπραγματοποιούν κατά κανόνα πιο αργές κινήσεις (π.χ. οι μυς των άκρων) αποτελούνται από λίγες κινητικέςμονάδες, με πολλές μυϊκές ίνες η κάθε μία. Ο δικέφαλος μπορεί να αποτελείται από 600 κινητικές μονάδες,με 1000 μυϊκές η κάθε μία.

Η δύναμη μίας κινητικής μονάδας, εξαρτάται εκτός των άλλων, και από τον αριθμό των μυϊκών ινών πουπεριέχει. Εξαιτίας του σχετικά περιορισμένου αποθέματος δύναμης μίας κινητικής μονάδας, πρέπει, για τηνεκτέλεση μιας κίνησης, να ενεργοποιηθούν ταυτόχρονα περισσότερες κινητικές μονάδες. Όσο υψηλότερηείναι η αντίσταση που πρέπει να υπερνικηθεί, τόσο περισσότερες κινητικές μονάδες πρέπει να συμμετέχουνστην πραγματοποίηση της κίνησης. Για να ενεργοποιηθεί μία κινητική μονάδα, πρέπει η ένταση του σήματοςπου στέλνεται στο νεύρο που ανήκει σε αυτή τη μονάδα να ξεπερνάει ένα επίπεδο έντασης. Κάθε κινητικήμονάδα έχει το δικό της διαφορετικό επίπεδο έντασης (
κατώφλι ενεργοποίησης
), το οποίο πρέπει ναξεπεραστεί από το σήμα του νεύρου για να ενεργοποιηθεί. Έτσι, αν το νευρικό ερέθισμα που στέλνει οεγκέφαλος είναι χαμηλό, τότε συσπώνται μόνο εκείνες οι μυϊκές ίνες των κινητικών μονάδων, που έχουνχαμηλό επίπεδο ερεθισμού. Αν το ερέθισμα είναι δυνατότερο, τότε αντιδρούν και πρόσθετες κινητικέςμονάδες με υψηλότερο επίπεδο ερεθισμού. Τα ερεθίσματα αυτά στέλνονται με την βούληση του ανθρώπου,με την θέλησή του. Κατά την αθλητική δραστηριότητα, όσο εμφανίζεται συγκέντρωση όξινων μεταβολικώνπροϊόντων στους μυς (γαλακτικό όξυ, διοξείδιο του άνθρακα κλπ), όσο εξαντλούντα τα ενεργαιακάαποθέματα και όσο υπάρχει έντονη απαίτηση για νευρική δραστηριότητα από το σώμα, απαιτείται από τοναθλητή ολοένα και μεγαλύτερη "συμμετοχή της θέλησης", κάτι που πολλοί πρακτικοί ονομάζουν την"ψυχή" του αθλητή.
1.10 Ενδομυϊκή και μεσομυϊκή συναρμογή: Μέγιστο αποτέλεσμα μεελάχιστη κατανάλωση
Την ικανότητα ενός αθλητή να ενεργοποιεί τις κινητικές μονάδες των μυών του διαβαθμισμένα, τηνονομάζουμε
ενδομυϊκή συναρμογή
. Το επίπεδο της ενδομυϊκής συναρμογής ενός αθλητή είναι υψηλόόταν έχει μια καλή ικανότητα για διαφοροποίηση της δύναμης, και αν μπορεί να ενεργοποιήσει ταυτόχροναένα υψηλό ποσοστό των διαθέσιμων κινητικών μονάδων. Στην πράξη, αυτό σημαίνει για έναν αθλητήαφενός μεν να μπορεί να ενεργοποιεί ακριβώς όσες κινητικές μονάδες χρειάζεται για μία επιθυμητή ένταση(επίσης να μπορεί να αυξάνει κατά πολύ μικρά στάδια την ένταση). Η ικανότητα αυτή μοιάζει με τιςταχύτητες των ποδηλάτων. Ποδήλατα με μικρό αριθμό ταχυτήτων έχουν μεγάλα κενά στην απαιτούμενηένταση - χαμηλή ενδομυϊκή συναρμογή - ενώ ποδήλατα με μεγάλο αριθμό αριθμό ταχυτήτων προσφέρουν"πατήματα" με μικρές αποκλίσεις στην απαιτούμενη ένταση - υψηλή ενδομυϊκή συναρμογή. Με όμοιοτρόπο, ένας δρομέας με χαμηλή ενδομυϊκή συναρμογή δεν μπορεί π.χ. να τρέξει με ένταση μεταξύ 85% και87%, ενώ ένας δρομέας με υψηλή μπορεί να επιτύχει και ενδιάμεσες εντάσεις. Επίσης, κριτήριο για υψηλήενδομυϊκή συναρμογή, είναι η ικανότητα ενεργοποίησης πολλών κινητικών μονάδων του μυ. Οιπροπονημένοι αθλητές δύναμης μπορούν και επιστρατεύουν μέχρι και το 85% των κινητικών τουςμονάδων, κάτι που μεταφράζεται σε τεράστια παραγωγή έργου.Οι αθλητικές κινήσεις δεν εκτελούνται από έναν μυ, αλλά συμμετέχει ένας σχετικά μεγάλος αριθμός μυώνή μυϊκών ομάδων.Η συνεργασία των μυών ή μυίκών ομάδων που συμμετέχουν στην κίνηση, χαρακτηρίζεταιως
μεσομυϊκή συναρμογή
. Υψηλή μεσομυϊκή συναρμογή σημαίνει πως ο αθλητής μπορεί και ενεργοποιείμόνο εκείνες τις μυϊκές ομάδες που συμβάλλουν στην αθλητική του επίδοση, και μάλιστα ενεργοποιούνταιόλες συγχρονισμένες χρονικά, έτσι ώστε να παράγουν το μεγαλύτερο δυνατό έργο (και να υπάρχουν οιλιγότερες δυνατές απώλειες). Ιδιαίτερη σημασία για την ποιότητα της μεσομυϊκής συναρμογής έχει ησυνεργασία ανάμεσα στους μυς που πραγματοποιούν την κίνηση (
αγωνιστές
) και στους μυς που είναιυπεύθυνοι για την αντίθετη κίνηση (
ανταγωνιστές
). Η συνεργασία αγωνιστών και ανταγωνιστώνεπηρεάζεται σημαντικά από την
ελαστικότητα
των μυών. Οι ελαστικοί μυς διαθέτουν το πλεονέκτημα ότι,ήδη κάτω από συνθήκες ηρεμίας έχουν μια ελαφριά προδιάταση (περίπου 15% του μήκους ισορροπίαςτους) και είναι ικανοί από αυτή την αρχική διάταση, ν' αναπτύξουν ιδιαίτερα μεγάλες δυνάμεις. Επίσηςσυμβάλλουν στο μεγάλο εύρος κινήσεων, που σημαίνει μεγαλύτερες τροχιές επιτάχυνσης - και συνεπώςκαλύτερη αξιοποίηση του δυναμικού της δύναμης - αλλά επίσης επιτρέπουν - επειδή οι ανταγωνιστέςφρενάρουν την κίνηση αργότερα - ρευστές, ελαστικές και απαλές κινήσεις. Στην ποδηλασία, η ελαστικότητατου τετρακεφάλου επιτρέπει μεγάλες δυνάμεις στην αρχή της πίεσης του πεντάλ, ενώ η ελαστικότητα τουδικεφάλου επιτρέπει την απρόσκοπτη εφαρμογή δύναμης μέχρι το τέλους του ημικυκλίου της πίεσης, καθώςκαι την ομαλή επαναφορά του ποδιού προς τα επάνω. Στο τρέξιμο, ελαστικότητα του τετρακεφάλου και τουγαστροκνήμιου (γάμπα) επιτρέπει την εφαρμογή δύναμης από την αρχή του πατήματος, ενώ ελαστικότητατου δικεφάλου και του πρόσθιου κνημιαίου επιτρέπει - εκτός των άλλων - εφαρμογή δύναμης μέχρι τοτέλος του διασκελισμού, καθώς και μεγαλύτερο διασκελισμό.

Μεγάλο μέρος των προπονήσεων επικεντρώνεται στην ενδομυϊκή και μεσομυϊκή συναρμογή, ιδίως τονχειμώνα, κατά την περίοδο της προετοιμασίας. Η πολύπλοκη τεχνική ενός αγωνίσματος διαιρείται σεεπιμέρους κινήσεις. Έτσι, είναι δυνατόν να υποβληθούν σε προπόνηση δύναμης οι σχετικά μεμονωμένεςμυϊκές ομάδες που συμπράττουν στην συνολική κίνηση, με ειδικές ασκήσεις, εποσκοπώντας στην βελτίωσητης ενδομυϊκής συναρμογής. Με τις ειδικές ασκήσεις, κάθε μυϊκή ομάδα μπορεί να επιβαρυνθεί σε μεγάλοβαθμό, και έτσι να επιτευχθεί υψηλή συναρμογή. Η βελτίωση της μεσομυϊκής συναρμογής απαιτεί πλέοντην ενεργοποίηση όλων των μυϊκών ομάδων, με εξειδικευμένη προπόνηση, που να ανταποκρίνεται στηνπραγματική αγωνιστική κίνηση. Σημαντικές δυσκολίες στην βελτίωση της μεσομυϊκής συναρμογήςπαρουσιάζονται όταν δεν έχουν εκγυμνασθεί ομοιόμορφα οι μυϊκές ομάδες που συμμετέχουν στην κίνηση,για παράδειγμα ένας γυμνασμένος τετρακέφαλος με έναν αγύμναστο δικέφαλο αποτρέπει την επίτευξηυψηλής μεσομυϊκής συναρμογής, και κατά συνέπεια την ικανότητα υψηλής απόδοσης του αθλητή.Παραπέρα συνέπεια, μπορεί να είναι και η εμφάνιση τραυματισμών από την ανομοιόμορφη ικανότηταεπιβάρυνσης των μυών.
Είναι βασικό να κατανοηθεί η σημασία της μυκής συναρμογής (ενδομυϊκής και μεσομυϊκής). Υψηλή συναρμογή σημαίνει βέλτιστη αξιοποίηση των μυϊκών ικανοτήτων,με ελάχιστες απώλειες που οφείλονται στην αδυναμία συγχρονισμού των μυών. Επίσης,ο αθλητής με υψηλή συναρμογή, δεν έχει μόνο μεγαλύτερη μυϊκή μάζα που μπορεί νατην εξαντλήσει πιο εκτεταμένα (ενδομυϊκή συναρμογή), αλλά είναι και σε θέση νααξιοποιήσει αυτό το δυναμικό δύναμης πολύ πιο αποτελεσματικά, σε μια ειδικήεξωτερική επίδοση (μεσομυϊκή συναρμογή).
Όλα για την αντοχή - Μέρος ΙΙ: Ενεργειακήεξασφάλιση
Αλέξης Χριστοδούλου
Στο πρώτο μέρος, αναλύσαμε την διαδικασία συστολής των μυών, η οποία είναι και το ζητούμενο, αφούαυτή παράγει το αθλητικό έργο. Τώρα πλέον μπορούμε να αναλύσουμε το ουσιαστικότερο κομμάτι πουαφορά τους αθλητές αντοχής, και το οποίο αναφέρεται συχνά ως
ενεργειακή εξασφάλιση
. Θα δούμε απόπού αντλούν οι μυς την ενέργεια που απαιτείται για την συστολή τους και με ποιες διαδικασίες γίνεται αυτό.Η γνώση αυτών των διαδικασιών είναι απαραίτητη προκειμένου να μπορέσουμε να μπούμε αργότερα στηνδιαδικασία σχεδιασμού της προπόνησης.
ΕΙΣΑΓΩΓΗ
Ένα από τα θαυμαστά φαινόμενα του ανθρώπινου οργανισμού, είναι η ικανότητά του να λαμβάνει τροφέςκαι να τις χρησιμοποιεί ώστε να παράγει μηχανικό έργο. Η λειτουργία αυτή παρομοιάζεται με την λειτουργίατου λέβητα, ο οποίος καταναλώνει μία ελάχιστη ποσότητα καυσίμου για να παραμένει σε ετοιμότητα(διατηρώντας τη φλόγα του), και αρχίζει να καίει μεγάλες ποσότητες όταν του ζητηθεί να παράγει θερμικήενέργεια. Έτσι και ο άνθρωπος, είναι μία μηχανή που «καίει» συνεχώς μικρή ποσότητα καύσιμης ύλης γιατην συντήρησή του εν ζωή, και μεγάλες ποσότητες όταν θέλει να παράγει έντονο μηχανικό έργο.

2.1 Η ΕΝΕΡΓΕΙΑΚΗ ΤΡΙΑΔΑ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ
Ποια είναι τα καύσιμα του ανθρώπινου οργανισμού με τα οποία μπορεί να επιτευχθεί η συστολή τωνμυών; Τα άμεσα χρησιμοποιήσιμα καύσιμα για τον άνθρωπο, είναι τρία:•Η
φωσφοκρεατίνη
•Η
γλυκόζη
• Το
λίπος
Οι παραπάνω ουσίες χρησιμοποιούνται από τον οργανισμό για την επανασύνθεση του ATP, το οποίο όπωςείδαμε είναι αυτό που δίνει την ενέργεια στον μυ για να συσπαστεί.Η φωσφοκρεατίνη βρίσκεται στις λεγόμενες αποθήκες φωσφοκρεατίνης, μέσα στον μυ, σε πολύ μικρέςποσότητες.Η γλυκόζη, πέρα από την κυκλοφορία της στο αίμα, μέσω του οποίου μεταφέρεται σε όργανα που τηνχρειάζονται, αποθηκεύεται στο ήπαρ (συκώτι) και τους μυς, με τη μορφή μίας ουσίας που λέγεταιγλυκογόνο, και κακώς πολλές φορές αυτά τα δύο ταυτίζονται.
Το γλυκογόνο αποτελεί μορφήαποθήκευσης της γλυκόζης, και δεν μπορεί να συμμετάσχει απευθείας στις διαδικασίεςπαραγωγής ενέργειας, αν δεν μετατραπεί σε γλυκόζη (αποδόμηση γλυκογόνου)
. Το γλυκογόνοστους μυς είναι τυπικά 6 φορές περισσότερο από ότι το γλυκογόνο στο ήπαρ. Επίσης, το γλυκογόνο στοήπαρ χρησιμοποιείται κυρίως (περίπου το 60% αυτού) για την λειτουργία του εγκεφάλου και του νευρικούσυστήματος.Το λίπος υπάρχει αποθηκευμένο σε πολλά σημεία του σώματος, κυρίως όμως στον λιπώδη υποδόριο ιστό(κάτω από το δέρμα).Εκτός από την μηχανή (μύες), και το ντεπόζιτο καυσίμων (αποθήκες φωσφοκρεατίνης, γλυκογόνου καιλίπους), το ανθρώπινο σώμα περιέχει και ένα διυλιστήριο, το οποίο δέχεται τις τροφές και τις μετατρέπειστο απαιτούμενο καύσιμο κάθε φορά, με τρόπο που θα αναφέρουμε σε επόμενο άρθρο της σειράς, που έχεινα κάνει με την διατροφή.
2.2 ΟΙ 4 ΤΡΟΠΟΙ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ
Οι τρόποι μέσω των οποίων ο οργανισμός μπορεί να επιτύχει την παραγωγή ενέργειας (δηλαδή τηνπαραγωγή ATP για την σύσπαση των μυών), είναι οι εξής τέσσερις (απλοποιημένη παράσταση):

1. Αναερόβια – αγαλακτική διαδικασία
Φωσφοκρεατίνη + ADP -> Κρεατίνη + ATPΜε αυτόν τον τρόπο επιτυγχάνονται τεράστια ποσά ενέργειας σε πολύ σύντομο χρονικό διάστημα, μεαποτέλεσμα την γρήγορη εξάντληση της υπάρχουσας φωσφοκρεατίνης.
2. Αναερόβια – γαλακτική διαδικασία (=αναερόβια γλυκόλυση)
Γλυκόζη -> Γαλακτικό οξύ + ATPΜε αυτόν τον τρόπο επιτυγχάνεται πάλι μεγάλη ποσότητα ενέργειας σε σύντομο χρονικό διάστημα,κάνοντας όμως αντιοικονομική χρήση του γλυκογόνου, με αποτέλεσμα την ταχεία εξάντλησή του. Επίσης,το παραγόμενο γαλακτικό οξύ αποτελεί δηλητήριο για τους μυς, και εάν δεν προλάβει να απομακρυνθεί απότους μυς, σύντομα επέρχεται ανικανότητα εργασίας των μυών.
3. Αερόβια διαδικασία (=αερόβια γλυκόλυση, οξειδωτική αποδόμηση γλυκογόνου)
Γλυκόζη + Οξυγονο -> Διοξείδιο Άνθρακα + Νερό + ATPΜε αυτόν τον τρόπο έχουμε μία οικονομική αξιοποίηση του γλυκογόνου, και η ενέργεια που παρέχεταιδεν είναι πλέον τόσο μεγάλη στην μονάδα του χρόνου, αλλά μπορεί να διατηρηθεί για περισσότεροδιάστημα.
4. Αερόβια διαδικασία (=λιπόλυση, οξειδωτική αποδόμηση των λιπών)
Λίπη + Οξυγόνο -> Διοξείδιο Άνθρακα + Νερό + ATPΟ τελευταίος τρόπος είναι και ο πιο οικονομικός για τον οργανισμό, αφού το υπάρχον λίπος μπορεί μεαυτόν τον τρόπο να παρέχει ενέργεια στον οργανισμό θεωρητικά επί αμέτρητες ώρες. Ο ρυθμός παροχήςαυτής της ενέργειας όμως, είναι πολύ αργός.

Σε εξαιρετικές συνθήκες, όταν η άσκηση διαρκεί πάρα πολύ μεγάλο χρονικό διάστημα, ο οργανισμόςχρησιμοποιεί και τις πρωτεΐνες για την παραγωγή ενέργειας σε ποσοστό 3-5%, αλλά δεν θα ασχοληθούμεμε αυτό το φαινόμενο.Βλέπουμε λοιπόν ότι ο οργανισμός μπορεί να παράγει την απαιτούμενη ενέργεια είτε με την χρήσηοξυγόνου (αερόβια), είτε χωρίς αυτή (αναερόβια). Όπως φάνηκε από τους τέσσερις δυνατούς τρόπουςπαραγωγής ενέργειας, όταν έχουμε μεγάλο ρυθμό παραγωγής ενέργειας, τότε έχουμε και ταχεία εξάντλησητων ενεργειακών αποθεμάτων. Αντίθετα, οι τρόποι που μας δίνουν απεριόριστο χρόνο παραγωγήςενέργειας, δεν έχουν μεγάλο ρυθμό παροχής αυτής της ενέργειας.Έτσι, ο ανθρώπινος οργανισμός, αποφασίζει ποιον τρόπο θα ενεργοποιήσει, ανάλογα με την ένταση τηςδραστηριότητας που απαιτείται. Ας μελετήσουμε λοιπόν ξεχωριστά τον τρόπο αξιοποίησης των αποθεμάτωνανάλογα με την ένταση της άσκησης, προκειμένου να καταλήξουμε σε χρήσιμα συμπεράσματα για το πώςένας αθλητής μπορεί να διανύσει την μεγαλύτερη απόσταση στον μικρότερο δυνατό χρόνο βάση τωνενεργειακών του αποθεμάτων.
2.2.1 Αναερόβια – αγαλακτική διαδικασία
Όταν η αθλητική δραστηριότητα είναι εξαιρετικά έντονη, όπως στα εκρηκτικά σπριντ, όπου απαιτούνταιτεράστια ποσά ενέργειας σε πολύ μικρό χρονικό διάστημα, ο μόνος τρόπος για να ανταποκριθεί οοργανισμός είναι με την χρήση της φωσφοκρεατίνης (1ος τρόπος). Οι αποθήκες φωσφοκρεατίνης όμωςαρκούν για
το πολύ 10 δευτερόλεπτα
, ενώ για να ξαναγεμίσουν απαιτούν 3-5 δευτερόλεπτα.Λανθασμένα πολλοί θεωρούν ότι οι σπρίντερ βασίζονται αποκλειστικά σε αυτόν τον τρόπο παραγωγήςενέργειας, αφού δεν επαρκεί για παραπάνω από 10 δευτερόλεπτα. Δεν αναλύουμε επιπλέον αυτή τηδιαδικασία, αφού δεν απασχολεί ιδιαίτερα τους αθλητές αντοχής.
2.2.2 Αναερόβια – γαλακτική διαδικασία (=αναερόβια γλυκόλυση)
Σε υψηλές εντάσεις, ακόμη και όταν χρησιμοποιείται η φωσφοκρεατίνη, ενεργοποιείται χωρίςκαθυστέρηση (περίπου μετά από 5 δευτερόλεπτα) και ο 2ος τρόπος παραγωγής ενέργειας, ο αναερόβιος –γαλακτικός (αναερόβια γλυκόλυση),
φτάνοντας την μέγιστη ενεργοποίησή του μετά από 40-60δευτερόλεπτα
. Εκεί, το γλυκογόνο των μυών μετατρέπεται σε γλυκόζη, και χωρίς την χρήση οξυγόνουμπορεί και παράγει ATP. Η παραγωγή ATP γίνεται σε πολύ σύντομο χρονικό διάστημα, και έτσι εξυπηρετείταιη ανάγκη της έντονης αθλητικής δραστηριότητας. Όμως, το αντίτιμο είναι η αυξημένη ποσότηταγλυκογόνου που καταναλώνεται για αυτό το έργο. Θα μπορούσαμε να το παρομοιάσουμε με την περίπτωσηόπου μία μηχανή αυτοκινήτου δουλεύει σε πολλές στροφές, παράγοντας μεγάλη ισχύ, αλλά κάνονταςάσκοπη κατανάλωση καυσίμου.Επιπλέον, κατά την αναερόβια – γαλακτική διαδικασία, παράγεται το λεγόμενο
γαλακτικό οξύ
, το οποίοευρέως αναφέρεται μεταξύ των αθλητών όταν κάνουν έντονες προπονήσεις. Το
γαλακτικό οξύ
είναι μίαουσία, η οποία παρεμποδίζει τους μύες να αξιοποιήσουν την γλυκόζη και κατά κάποιο τρόπο τους«δηλητηριάζει». Ο οργανισμός μπορεί και αποβάλλει αυτή την ουσία (στην ουσία την χρησιμοποιεί) σεπεριορισμένη όμως ποσότητα. Εάν η αναερόβια γλυκόλυση συνεχίζεται και η ποσότητα του γαλακτικούοξέος αυξάνεται πάνω από την ποσότητα την οποία μπορεί να απορροφήσει ο οργανισμός, οι μύες δενμπορούν να παράγουν την απαιτούμενη ενέργεια, παρουσιάζοντας συμπτώματα πόνου και μουδιάσματος.

Έτσι απαιτείται δραστική μείωση της έντασης, ή και ακινητοποίηση. Στην γλώσσα των αθλητών….«
κάρφωμα
». Να σημειωθεί ότι μέσω της στοχευμένης προπόνησης αυξάνεται η ικανότητα ανοχής στογαλακτικό οξύ, μπορούν δηλαδή οι μύες να εργάζονται πιο άνετα παρά την παρουσία του γαλακτικούοξέως, καθώς επίσης σημαντικό ρόλο παίζει ο ψυχολογικός παράγοντας, αφού μία ισχυρή θέληση προκαλείτην έκκριση ενδορφινών, οι οποίες αναστέλλουν τον πόνο που προκαλείται από την παρουσία γαλακτικούοξέως.
2.2.3 Αερόβια διαδικασία (=αερόβια γλυκόλυση, οξειδωτικήαποδόμηση γλυκογόνου)
Όταν η ένταση της άσκησης είναι ακόμα μικρότερη, τότε ο οργανισμός μπορεί να ανταποκριθείπαράγοντας ενέργεια με τον 3ο τρόπο, χρησιμοποιώντας δηλαδή οξυγόνο για την αξιοποίηση τουγλυκογόνου (αερόβια γλυκόλυση). Το μειονέκτημα της αερόβιας γλυκόλυσης έναντι της αναερόβιας, είναιότι
παρέχει την μισή ενέργεια στην ίδια μονάδα του χρόνου
. Έτσι, θα μπορούσαμε να πούμε ότιχρησιμοποιώντας αερόβια γλυκόλυση, ένας δρομέας σε διάστημα π.χ. 5 λεπτών, θα διανύσει την μισήαπόσταση από ότι εάν χρησιμοποιούσε αναερόβια. Το μεγάλο πλεονέκτημα όμως της αερόβιας γλυκόλυσης,είναι ότι χρη
σιμοποιεί το 1/18 της ποσότητας γλυκογόνου
που χρησιμοποιεί η αναερόβια γλυκόλυσηγια το ίδιο ποσό ενέργειας. Χοντρικά, με το ίδιο ποσό γλυκογόνου, ένας δρομέας που κάνει αερόβια χρήσητου γλυκογόνου, μπορεί να διανύσει 18 φορές μεγαλύτερη απόσταση από ότι εάν έκανε αναερόβια.Μπορούμε πάλι να παρομοιάσουμε την αερόβια γλυκόλυση με μία μηχανή αυτοκινήτου που δουλεύει σεχαμηλές στροφές, διανύοντας αργά τα χιλιόμετρα, αξιοποιώντας όμως καλύτερα τα καύσιμαΝα σημειωθεί ότι η αερόβια γλυκόλυση ενεργοποιείται μετά από καθυστέρηση 2 περίπου λεπτών.
2.2.4 Αερόβια διαδικασία (=λιπόλυση, οξειδωτική αποδόμηση τωνλιπών)
Όταν η ένταση της άσκησης είναι αρκετά μικρή, τότε η απαιτούμενη ενέργεια μπορεί να προσφερθεί μέσααπό τον 4ο τρόπο παραγωγής ενέργειας, χρησιμοποιώντας το λίπος παρουσία οξυγόνου για την παραγωγήATP. Εδώ πλέον έχουμε ενέργεια που παρέχεται πολύ αργά, αλλά με σχεδόν ανεξάντλητα αποθέματα. Οοργανισμός καίει αποκλειστικά λίπος μόνο σε πολύ χαμηλές εντάσεις (κάτω από το 50% της μέγιστηςκαρδιακής συχνότητας), ή όταν υπάρχει πλήρης εξάντληση του γλυκογόνου.
2.3 ΓΛΥΚΟΓΟΝΟ – ΠΡΟΣΕΧΟΥΜΕ ΓΙΑ ΝΑ ΕΧΟΥΜΕ
Όπως μπορεί κανείς εύκολα να καταλάβει, η στρατηγική του αγώνα ενός αθλητή αντοχής, έγκειται στοπως θα αξιοποιήσει καλύτερα το γλυκογόνο που έχει σε μία συγκεκριμένη απόσταση. Όταν η απόστασηείναι μικρή, τότε μπορεί να δουλέψει σε μεγάλες εντάσεις, κάνοντας αντιοικονομική χρήση τουγλυκογόνου, αλλά λαμβάνοντας μεγάλα ποσά ενέργειας, και κατά συνέπεια ταχύτητα. Όταν οι αποστάσειςμεγαλώνουν, η ένταση μικραίνει, προκειμένου να γίνει οικονομικότερη χρήση του γλυκογόνου και να μηνεξαντληθούν τα αποθέματα. Η στρατηγική εμπλέκεται σε αγώνες όπου η ένταση του αγώνα μεταβάλλεται(π.χ. ποδηλασία) και όχι όταν παραμένει σταθερή (π.χ. μαραθώνιος). Η αξιοποίηση του γλυκογόνου είναι ημεγαλύτερη έγνοια που πρέπει να έχει ένας ποδηλάτης σε έναν αγώνα. Κάθε «ξεκόλλημα», κάθε ανηφόρα,αρχίζει να τρώει αδηφάγα το γλυκογόνο των μυών, το οποίο όπως είπαμε είναι περιορισμένο. Πρέπει λοιπόν

κάθε τέτοια κίνηση
να γίνεται μόνο όταν είναι απαραίτητη και θα αποφέρει αποτέλεσμα στηνέκβαση του αγώνα
. Πολλοί είναι οι αθλητές που συνηθίζουν να κάνουν λεονταρισμούς, επιχειρώντας νακάνουν ψυχολογικό πόλεμο στους άλλους αθλητές αλλάζοντας τον ρυθμό του αγώνα. Τις περισσότερεςφορές, καταλήγουν λίγο πριν τον τερματισμό να τους προσπερνάνε οι προνοητικότεροι αντίπαλοι.
2.4 ΕΞΑΝΤΛΗΣΗ ΤΟΥ ΗΠΑΤΙΚΟΥ ΓΛΥΚΟΓΟΝΟΥ Η ΑΠΛΑ…ΣΟΥΡΩΜΑ
Το γλυκογόνο εντοπίζεται στο ήπαρ και τους μύες. Το γλυκογόνο του ήπατος χρησιμοποιείται στομεγαλύτερο μέρος του για την παροχή ενέργειας στον εγκέφαλο και το νευρικό σύστημα, τα οποίααποτελούν τον «πύργο ελέγχου» του ανθρώπινου οργανισμού. Όπως έχει αποδειχτεί σε εργαστηριακέςμετρήσεις, όταν η ένταση της επιβάρυνσης είναι τέτοια ώστε το γλυκογόνο χρησιμοποιείται κυρίως αερόβια,τότε
το γλυκογόνο του ήπατος εξαντλείται γρηγορότερα από το μυϊκό γλυκογόνο
. Σαν αποτέλεσμα,ο αθλητής παρουσιάζει συμπτώματα ζαλάδας, ανικανότητας συντονισμού και έλλειψη θέλησης, παρόλο πουμυϊκά μπορεί να νιώθει ικανός. Για την αποφυγή αυτού του φαινομένου, το οποίο αποκλείει τον αθλητή απότην μέγιστη απόδοσή του, κρίνεται αναγκαίο σε αγωνίσματα μεγάλης διάρκειας
να παρέχεται από τοστόμα σκεύασμα υδατανθράκων
, και αν είναι δυνατόν μικρές ποσότητες γλυκόζης ανά τακτά χρονικάδιαστήματα.Σε επόμενα μέρη της σειράς «Όλα για την αντοχή» όπου θα αναφερθούμε σε θέματα προπόνησης καιδιατροφής, θα δούμε τρόπους ώστε ο αθλητής να διαθέτει όσο το δυνατόν περισσότερο γλυκογόνοδιαθέσιμο στην πριν και κατά την διάρκεια της επιβάρυνσης.
2.5 ΛΙΠΟΣ – ΈΡΧΕΤΑΙ ΑΡΓΑ ΑΛΛΑ ΘΑΥΜΑΤΟΥΡΓΑ
Όσο η διάρκεια της άσκησης αυξάνεται, τόσο το λίπος αυξάνει την συμμετοχή του στην παραγωγήενέργειας. Σε εργαστηριακά τεστ σε εργόμετρο τα οποία υπέβαλλαν τους αθλητές για 2 ώρες σε ένταση65%, κατά την έναρξη της άσκησης το λίπος παρείχε το 39% της απαιτούμενης ενέργειας, ενώ μετά απόδύο ώρες παρείχε το 67%.Αυτός είναι άλλος ένας λόγος που η καλή προθέρμανση είναι απαραίτητη πριν από οποιαδήποτε άσκηση.Μάλιστα, πριν από αγώνες που προβλέπεται έντονη επιβάρυνση από την αρχή του αγώνα, πρέπει ναπροηγηθεί μακρόχρονη άσκηση σε χαμηλή ένταση, ώστε η εκκίνηση να βρει τον οργανισμό έτοιμο ναχρησιμοποιήσει όσο το δυνατόν περισσότερο λίπος, χωρίς βέβαια να έχει καταναλωθεί σημαντική ποσότηταγλυκογόνου.
2.6 ΑΕΡΟΒΙΟ ΚΑΙ ΑΝΑΕΡΟΒΙΟ ΚΑΤΩΦΛΙ
Από τα παραπάνω, κρίνεται απαραίτητο κάθε αθλητής να γνωρίζει το είδος της ενεργειακής εξασφάλισηςπου χρησιμοποιεί κάθε στιγμή, ανάλογα με την ένταση της άσκησης. Για τον λόγο αυτό, απαιτείται έναςτρόπος μέτρησης της έντασης της άσκησης.

Ένας τρόπος μέτρησης της έντασης της άσκησης, είναι οι καρδιακοί σφυγμοί ανά λεπτό (HR). Θεωρώνταςτους σφυγμούς εν ηρεμία (HRrel) σαν 0% έντασης και τους μέγιστους σφυγμούς (HRmax) σαν 100%,μπορούμε να καθορίσουμε όλες τις ενδιάμεσες εντάσεις.Οι τρεις τρόποι παραγωγής ενέργειας δεν αλληλοαποκλείονται, δηλαδή μπορούν να συμβαίνουν ακόμηκαι οι τρεις ταυτόχρονα. Προφανώς ξεκινώντας από μία χαμηλή ένταση (κάτω από 50%) ο αθλητής καίειαποκλειστικά λίπος, ενώ όσο αυξάνει την ένταση αρχίζει η αερόβια συμμετοχή του γλυκογόνου. Σε ακόμαμεγαλύτερη αύξηση της άσκησης, ξεκινάει πλέον και η αναερόβια συμμετοχή του γλυκογόνου. Η ένδειξηπου μπορεί να μαρτυρήσει εάν ο αθλητής κάνει αερόβια ή αναερόβια χρήση του γλυκογόνου, είναι ηποσότητα γαλακτικού οξέως στο αίμα.Για όσο διάστημα συντηρείται η μυϊκή δραστηριότητα σε χαμηλές εντάσεις, όπου έχουμε αερόβιομεταβολισμό του γλυκογόνου και των λιπών, οι τιμές του γαλακτικού οξέως κυμαίνονται κάτω από τα 2mmol/l (το γαλακτικό οξύ υπάρχει και σε κατάσταση ηρεμίας σε ποσότητες 1,0-1,78 mmol/l).Ονομάζουμε
αερόβιο κατώφλι
την ένταση της επιβάρυνσης η οποία παρουσιάζει τιμές γαλακτικού οξέωςστο αίμα κοντά στα 2 mmol/l, κοντά δηλαδή στις φυσιολογικές τιμές ηρεμίας, γεγονός που δείχνει ότι δενέχει ξεκινήσει ακόμη αναερόβια γλυκόλυση. Στο αερόβιο κατώφλι, πιθανό γαλακτικό οξύ που προκύπτει,απομακρύνεται αμέσως στους ίδιους τους μυς.Σε εντάσεις πάνω από το αερόβιο κατώφλι, παρατηρείται συσσώρευση γαλακτικού οξέως στο αίμα. Τότελέμε ότι βρισκόμαστε σε
αερόβια-αναερόβια μετάβαση
. Η τιμή του γαλακτικού οξέως εδώ είναιαυξημένη, αλλά δεν αυξάνεται εάν δεν αυξηθεί η ένταση της άσκησης. βρισκόμαστε δηλαδή σε μίαισορροπία γαλακτικού οξέως, όπου η αναερόβια χρήση του γλυκογόνου έχει ξεκινήσει, αλλά το παραγόμενογαλακτικό οξύ προλαβαίνει να απορροφηθεί από τον οργανισμό.Αυξάνοντας και άλλο την ένταση, φτάνουμε σε ένα σημείο όπου πλέον ο οργανισμός δεν μπορεί νααπορροφήσει το παραγόμενο γαλακτικό οξύ, και παρόλο που διατηρούμε σταθερή την ένταση της άσκησης,η ποσότητα του γαλακτικού οξέως στο αίμα συνεχώς αυξάνεται. Η ένταση πέρα από την οποία παράγεταιπερισσότερο γαλακτικό οξύ από όσο μπορεί να απορροφήσει ο οργανισμός, ονομάζεται
αναερόβιοκατώφλι
. Πάνω από αυτή την ένταση έχει προ πολλού ξεκινήσει η έντονη αναερόβια χρήση τουγλυκογόνου, και σύντομα οι μυς θα αδυνατούν να εργαστούν κανονικά λόγω της υψηλής συγκέντρωσηςτου γαλακτικού οξέως.Είναι λοιπόν άκρως απαραίτητο για έναν αθλητή να γνωρίζει το αερόβιο και το αναερόβιο κατώφλι του,προκειμένου να γνωρίζει τόσο στην προπόνηση όσο και στον αγώνα κάθε στιγμή σε τι φάση βρίσκεται,χρησιμοποιώντας αρχικά έναν παλμογράφο. Έμπειροι αθλητές μπορούν με μεγάλη ακρίβεια να εκτιμήσουνεάν και κατά πόσο έχουν ξεπεράσει το αερόβιο κατώφλι τους. Η εξακρίβωση του αερόβιου και τουαναερόβιου κατωφλιού γίνεται με ειδικά εργομετρικά τεστ. Να σημειωθεί ότι ένας αθλητής μπορεί να έχειδιαφορετικό αερόβιο κατώφλι στο τρέξιμο και διαφορετικό στο ποδήλατο, οπότε πρέπει το τεστ να γίνει στοανάλογο εργόμετρο που εξειδικεύεται ο αθλητής. Χοντρικά, σε μία μέγιστη επιβάρυνση διάρκειας 5 λεπτών,το 50% της ενέργειας παρέχεται από αναερόβια γλυκόλυση και το 50% από αερόβια γλυκόλυση. Εάν δενυπάρχει η δυνατότητα για εργομετρικό τεστ, τότε ο αθλητής πρέπει να μπορεί να «ακούει» το σώμα του,προκειμένου να καταλάβει περίπου που βρίσκεται το αερόβιο και το αναερόβιο κατώφλι του.

Σαν γενικά παραδείγματα, μπορούμε να δώσουμε τα αποτελέσματα γενικών ερευνών, όπου το αερόβιοκατώφλι απροπόνητων βρίσκεται στο 45-50%, ενώ των προπονημένων στο 60-65%. Ομοίως το αναερόβιοκατώφλι απροπόνητων στο 50-70%, μέτρια προπονημένων στο 70-80% και υψηλά προπονημένων στο 85-95%. Φαίνεται λοιπόν ξεκάθαρα πως ένας πιο προπονημένος αθλητής αξιοποιεί αερόβια το γλυκογόνο τουσε υψηλότερες εντάσεις, καθώς επίσης μπορεί να συντηρήσει πιο υψηλές εντάσεις χωρίς να αναγκαστεί νασταματήσει λόγω της συγκέντρωσης γαλακτικού οξέως.
2.7 ΜΕΓΙΣΤΗ ΠΡΟΣΛΗΨΗ ΟΞΥΓΟΝΟΥ (VOMAX) – Ο ΑΠΑΤΗΛΟΣΔΕΙΚΤΗΣ
Όσο πιο έντονη γίνεται η αερόβια άσκηση, τόσο περισσότερο οξυγόνο απαιτείται από τον οργανισμό γιατην αερόβια γλυκόλυση. Στην αρχή αυτή βασίστηκαν πολλοί εργοφυσιολόγοι του περασμένου αιώνα, καιεπινόησαν ένα δείκτη, ο οποίος θα μετρούσε την προσφορά οξυγόνου (αναπνοή), τη μεταφορά οξυγόνου(καρδιοκυκλοφορικό) και την αξιοποίηση του οξυγόνου (μυϊκά κύτταρα) σε κατάσταση πλήρουςεπιβάρυνσης του οργανισμού. Κατά κάποιον τρόπο, επιχείρησαν να επινοήσουνε έναν σύνθετο δείκτη γιατην αερόβια αντοχή. Το όνομα αυτού…
μέγιστη πρόσληψη οξυγόνου
(
VOmax
).Αν και αρχικά η έννοια της μέγιστης πρόσληψης οξυγόνου έγινε δεκτή με ενθουσιασμό και οιπροπονητικές μέθοδοι στηρίχτηκαν επάνω της με βεβαιότητα, σήμερα υπάρχει σκεπτικισμός για το κατάπόσον μπορεί να αποτελέσει αξιόπιστο δείκτη για την αερόβια αντοχή ενός αθλητή. Επειδή όμως παραμένειένα αναπόσπαστο εργαλείο για την παρακολούθηση ενός αθλητή, θα την αναλύσουμε μέχρι ενός σημείου.Σαν μέγιστη πρόσληψη οξυγόνου ενός αθλητή θεωρούμε την μέγιστη ροή οξυγόνου που μπορεί ναεπιτύχει ο αθλητής
στο αίμα του
. Επειδή αθλητές διαφορετικού βάρους παρουσιάζουν μεγάλες διαφορέςστην μέγιστη αυτή τιμή, προτιμούμε να αναφερόμαστε στην
σχετική μέγιστη πρόσληψη
, που είναι απλάη απόλυτη μέγιστη πρόσληψη διαιρεμένη με το βάρος του αθλητή. Έτσι, η (σχετική) μέγιστη πρόσληψηοξυγόνου είναι ένα μέγεθος που μετριέται σε ml οξυγόνου ανά κιλό σωματικού βάρους ανά λεπτό.Οι τελευταίες μελέτες απέδειξαν ότι η VOmax είναι ένα μέγεθος που επηρεάζεται από πολλούςπαράγοντες (προσωπικά χαρακτηριστικά, πνευμονικός αερισμός, σύνθεση μυϊκών ινών, μέγεθοςενεργοποιούμενης μάζας, θέση του σώματος, κλίμα κλπ), και συνεπώς δεν μπορεί να αποτελέσει απόλυτοκριτήριο για το αν κάποιος είναι προπονημένος ή όχι, πολλώ δε μάλλον για το αν είναι ταλέντο ή όχι. Τότελοιπόν σε τι χρησιμεύει αυτός ο δείκτης;Η χρησιμότητα της VOmax σαν δείκτη έγκειται στην παρακολούθηση της πορείας του αθλητή, όταν αυτήμετριέται ανά
τακτά χρονικά διαστήματα
, με τον
ίδιο τρόπο
και υπό τις
ίδιες συνθήκες
. Η σωστήπροπόνηση πρέπει να οδηγεί σε αύξηση της VOmax, καθώς και αύξηση του ποσοστού της VOmax πουμπορεί να χρησιμοποιηθεί για μεγάλο χρονικό διάστημα, κάτι που είναι ίσως και το βασικότερο.Η δυνατότητα ανάπτυξης της VOmax μέσω της προπόνησης υπολογίζεται γύρω στο 15-20%, εφόσον δενέχουν τεθεί αντίστοιχα ερεθίσματα στην ηλικία της ανάπτυξης (εφηβεία). Αυτό που μπορεί να αναπτυχθείακόμη περισσότερο είναι το ποσοστό της VOmax που μπορεί να συντηρηθεί για μεγάλο χρονικό διάστημα(ύψος αναερόβιου κατωφλιού). Εδώ θεωρείται ότι υπάρχει μία δυνατότητα βελτίωσης σε ποσοστό 50-70%.

Εδώ θα πρέπει να επισημανθεί η σημασία στην
οικονομία της κίνησης
. Υψηλή VOmax σημαίνει υψηλήικανότητα παραγωγής έργου. Αυτό όμως δεν σημαίνει ότι αυτό το παραγόμενο έργο διοχετεύεταιεξολοκλήρου στην δημιουργία της επιθυμητής κίνησης, μπορεί δηλαδή να υπάρχουν μεγάλες απώλειες σεάσκοπες κινήσεις καθώς και σε θερμότητα. Έχει παρατηρηθεί κατά κόρον μαραθωνοδρόμοι με σημαντικάχαμηλότερη VOmax από άλλους, να πετυχαίνουν καλύτερους χρόνους, λόγω της οικονομίας της κίνησήςτους, είχαν δηλαδή λιγότερες απώλειες ενέργειας κατά την κίνηση.
2.8 ΟΡΜΟΝΕΣ ΠΟΥ ΕΜΠΛΕΚΟΝΤΑΙ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ
Η εκμετάλλευση των αποθηκών ενέργειας του ανθρώπινου οργανισμού, γίνεται υπό την καθοδήγησηκάποιων ορμονών, ουσιών που χρησιμεύουν ως αγγελιαφόροι για διάφορα όργανα του σώματος, καιεκκρίνονται πέρα από την θέληση του ανθρώπου. Ολοκληρώνοντας το δεύτερο μέρος, θα αναφερθούμεστις ορμόνες που έχουν να κάνουν με την αντοχή, και στις επιδράσεις τους όσον αφορά την αντοχή – οιεπιδράσεις των ορμονών είναι πολύπλευρες.Η
Σωματοτροπίνη
είναι μία αυξητική ορμόνη που επιβραδύνει την αποδόμηση της γλυκόζης, αυξάνει τηνεπανασύνθεση του γλυκογόνου, κινητοποιεί το λίπος από τον λιπώδη ιστό και ενθαρρύνει την καύση τουλίπους. Εμφανίζεται σε μεγάλες ποσότητες κατά τις επιβαρύνεις αντοχής μέτριας έντασης, και έτσιεξασφαλίζεται η καύση των λιπών.Η
Θυροξίνη
είναι μία ορμόνη του θυρεοειδούς αδένα η οποία προάγει την πρόσληψη οξυγόνου και τηνεπανασύνθεση του ΑΤΡ. Αυξάνει την διάσπαση του γλυκογόνου στους μυς και το ήπαρ καθώς και τηνπρόσληψη γλυκόζης στο έντερο.Η
Αδρεναλίνη
είναι μία κατεχολαμίνη, η οποία αυξάνει ιδιαίτερα την καρδιακή συχνότητα, επιταχύνει τηνδιάσπαση του γλυκογόνου στο ήπαρ και τους μυς και κινητοποιεί τα λίπη, συνεργάζεται δηλαδή τόσο με τηνσωματοτροπίνη όσο και με την θυροξίνη. Αντίστοιχα και η
Νοραδρεναλίνη
προκαλεί στένωση των αγγείωναυξάνοντας την πίεση του αίματος και κινητοποιεί τα λίπη. Οι δύο αυτές ορμόνες προετοιμάζουν τονοργανισμό για επιδόσεις, και γι’ αυτό είναι απαραίτητη η έκκρισή τους πριν από τον αγώνα. Επίσης, ηπροπόνηση μαζί με άλλους αθλητές προκαλεί εκείνη την ψυχική κατάσταση που απαιτείται για την έκκρισήτους, οπότε και η προπόνηση μπορεί να κυμανθεί σε υψηλότερα επίπεδα από ότι εάν ο αθλητής ήτανεμόνος του.Η
Ινσουλίνη
επιτρέπει την γρήγορη μεταφορά της γλυκόζης του αίματος μέσα στα μυϊκά κύτταρα,ενθαρρύνει την αποδόμηση των πρωτεϊνών στους μυς και ενθαρρύνει επίσης την εναποθήκευση λίπους απότο σάκχαρο της τροφής. Επίσης εμποδίζει την απελευθέρωση του λίπους. Η έκκριση ινσουλίνης καταπιέζεταιαπό τον οργανισμό όταν ο αθλητής βρίσκεται έτοιμος να αγωνιστεί.Οι ορμόνες δεν βρίσκονται σε περίσσεια στον οργανισμό. Επαναλαμβανόμενες έντονες προπονήσειςπροκαλούν την εξάντλησή τους, και προκειμένου ο αθλητής να είναι σε θέση για έντονη προπόνηση,
πρέπει να περάσει ένα διάστημα προκειμένου να επανασυντεθούν
. Η αδρεναλίνη καινοραδρεναλίνη, οι οποίες εκκρίνονται σε πολύ δυνατές προπονήσεις και σε αγώνες, χρειάζονται περίπου 72ώρες για την επανασύνθεσή τους. Αυτό σημαίνει ότι δεν μπορεί ένας αθλητής να καταφέρει επιδόσεις σεδύο αγώνες αν δεν παρεμβληθούν 2-3 μέρες. Εκεί έγκειται και η δυσκολία των ποδηλατικών πολυήμερωναγώνων, αφού πρέπει ο αθλητής να αγωνίζεται ήρεμα, και να ανεβάσει την ένταση μόνο όταν πρέπει,προκειμένου να κάνει οικονομία στις ορμόνες του και να μπορεί να αποδώσει όλες τις ημέρες των αγώνων.
2.9 ΣΥΜΠΕΡΑΣΜΑΤΑ
Σε αυτό το μέρος είδαμε ποιες είναι οι ουσίες που προσδίδουν ενέργεια στον οργανισμό, και με ποιοντρόπο γίνεται αυτό. Γνωρίζοντας ο αθλητής κάθε στιγμή το είδος της παραγωγής ενέργειας πουχρησιμοποιεί ο οργανισμός του, μπορεί να καταστρώσει την στρατηγική του για το καλύτερο δυνατόαποτέλεσμα. Είναι απαραίτητο για έναν αθλητή να γνωρίζει το αερόβιο και το αναερόβιο κατώφλι του, καινα στοχεύει πάντα στον οικονομικότερο τρόπο αξιοποίησης του γλυκογόνου του σε σχέση με τον στόχοτου.

Έχοντας γνώση των παραπάνω διαδικασιών, θα δούμε στη συνέχεια πως μπορεί οαθλητής μέσω της προπόνησης να μεγαλώσει τις αποθήκες ενέργειάς του και ναβελτιώσει την αξιοποίηση του γλυκογόνου του.
Τρέξιμο. Όλα για την αντοχή